 A pure substance is a single element or compound. A mixture is made up of two or more different elements or compounds that are not chemically joined together. A formulation is a mixture that has been specifically designed to produce a useful product. Examples include paints and medicinal drugs. <u>Identifying pure substances</u> The melting and boiling point of a substance can be used to tell whether it is pure or not. There are two ways you can use the melting and boiling point to tell if the sample is pure. 		Chromatography is used to identify unknown compounds in a sample. - The mobile phase moves and carries the different compounds in the sample through the stationary phase. - In paper chromatography, the mobile phase is a solvent such as water which carries the sample along the paper (stationary phase). - The different compounds in the sample will travel different distances along the paper. - If a compound is more strongly attracted to the mobile phase (very soluble in it) than the stationary phase, it will travel further up the paper. Pure or a mixture? Read the chromatogram vertically. If there is only one spot above the point where the sample was placed the sample is pure, more than one spot means a mixture. Calculating the Retention Factor value: Distance moved by substance R _f =		ample through the which carries the sample along the paper. luble in it) than the <u>pounds</u> ompounds we calculate the the Rf value we can s of known substances pases.			
 The range of the melting and boiling points will be very small if the sample is pure. Example:) Distance moved by solvent		travel the same distance.			
	Pure caffeine	Impure caffeine			Example:		In this example, two known
Melting point/ °C	234-237	180-220	Solvent front				compounds (red and green
 2) Alternatively, once you have recorded the melting/boiling point for a substance you can compare it to a database of known values. If the melting point you recorded matches the melting point given in the database, it is pure. If the melting point does not match the value in the database, your sample is impure. <u>Generally</u> impure substances will have a lower melting point and a higher boiling point than the pure substance. 		9.7cm 9.7cm Pencil baseline Example $\frac{7.5cm}{9.7cm} = 0.77$		 the chromatography pape We can use them to confirm that the unknown sample contains red and green ink because the spots in the sample have travelled the same vertice distance. The baseline is drawn in pencil and not ink because ink will dissolve in water and run. The pencil baseline must be above the surface of the water otherwise the sample will dissolve into the beaker of water and be lost. 		the chromatography paper. We can use them to confirm that the unknown sample contains red and green ink because the spots in the sample have travelled the same vertical distance. n pencil and not ink because r and run. the above the surface of e sample will dissolve into d be lost.	
<u>Testing for gases</u>							
<u>Hydrogen</u> Hold a lit splint near the sample of gas. <u>Carbon dioxide</u> Bubble gas through limewater							
Positive test: Hydrogen will burn with a squeaky pop sound. Positive test: If carbon dioxide is present it will turn limewater cloudy							
Oxygen Hold a glowing splint near the sample of gas. Positive test: If oxygen is present a clowing sp			<u>Chlorine</u> Use damp blue litmus paper Positive test: Chlorine will bleech damp blue litmus peper white				
rostive test. It oxygen is present a glowing spinit will relight. Positive test. Chlorine will bleach damp blue litmus paper white.							

Chemistry C12 – Chemical Analysis Page 1

Chemistry C12 – Chemical Analysis Page 2								
<u>Flame tests f</u>	or metal ions	Metal cation tests with sodium hydroxide	Metal cation tests with sodium hydroxide continued					
Dip a nichrome wire loop i sulphuric acid and then he	nto concentrated eat it to clean it.	Sodium hydroxide can be used to identify positive metal ions.	Some metal ions form coloured precipitates when sodium hydroxide is added Copper (II) Cu ²⁺ forms a blue precipitate Iron (II) Fe ²⁺ forms a green precipitate Iron (III) Fe ³⁺ forms a brown precipitate <u>Instrumental analysis</u> Many industries need quick and accurate methods for analysing their products. Modern equipment is very accurate, quick and can work on small samples although it is expensive. An example of instrumental analysis is flame emission spectroscopy. Metal ions emit unique wavelengths of light					
Then, dip the wire in the holding it in a roaring blue burner	unknown sample before e flame of a Bunsen	The following ions form a white precipitate with sodium hydroxide solution:						
The colour of the flame w ion is present. For mixtur colours like the yellow of colours that are present.	vill tell you which metal es, remember certain sodium may mask other	aluminium Al^{3+} calcium Ca^{2+} magnesium Mg^{2+} The ions react with sodium hydroxide to produce insoluble metal hydroxides for						
Metal ion	Flame colour	example:						
Lithium Li ⁺	Crimson	Ionic equation	when they are heated.					
Sodium Na ⁺	Yellow	$Al^{3+}(aq) + 30H^{-}(aq) \rightarrow Al(OH)_{3}(s)$	In a spectrometer we can analyse the unique pattern of					
Potassium K ⁺	Lilac	Note: To help tell the 3 ions apart if you	line spectrums.					
Calcium Ca ²⁺	Orange-red	continue to add sodium hydroxide the aluminium precipitate will dissolve. You can	In this example we can					
Copper Cu ²⁺	Green	also use a flame test.	confirm the sample contains Zn^{2+} ions because the line Fe^{2+} spectrums match. Zn^{2+}					
Carbo	<u>nates</u>	Halides (chlorides, bromides and iodides)	Sulphates					
If a metal carbonate is p acid and release carbon d observed.	present, it will react with ioxide meaning fizzing is	and then silver nitrate solution. If a precipitate forms, a halide is present.	You can test for sulphate ions by adding dilute hydrochloric acid and barium chloride solution. If a white precipitate forms, sulphate ions are present.					
Metal + acid → g carbonate	salt + water + carbon dioxide	carbonate ions because they form precipitates with silver ions.	The hydrochloric acid is added to remove any carbonate ions which would form a precipitate with the barium ions.					
The reaction can be show $CO_3^{2-}(s) + 2H^+(aq) \rightarrow CO_3^{2-}(s)$	n by an ionic equation; → CO ₂ (g) + H ₂ O(g)	chloride ions: white precipitate bromide ions: cream precipitate iodide ions: yellow precipitate	Example: If the unknown compound contained potassium sulphate, the equation would be: $K_2SO_4 (aq) + BaCl_2 (aq) \rightarrow 2KCl(aq) + BaSO_4(s)$					
Carbonate acid ion		Example NaCl (aq) + $AgNO_3(aq) \rightarrow NaNO_3(s) + AgCl(s)$						
The presence of carbon c using limewater.	lioxide can be confirmed	Ionic equation (where X represents a halide ion) $Ag^+(aq) + X^-(aq) \rightarrow AgX$ (s)	Ionic equation $Ba^{2+}(aq) + SO_4^{2-}(aq) \rightarrow BaSO_4(s)$					