Unit 1: Periodicity

1. Keywords	
Periodicity	The regular occurrence of elements with similar properties giving repeated patterns when compared to atomic number
First ionisation energy	The energy needed to remove 1 electron from each atom in 1 mole of gaseous atoms. $M(g) \rightarrow M^+(g) + e^-$
Second ionisation energy:	The energy needed to remove 1 electron from each atom in 1 mole of gaseous +1 ions. M^+ (g) $\rightarrow M^{2+}$ (g) + e ⁻
Successive ionisation energies:	Removing each electron in turn from a mole of gaseous atoms. Provides evidence of energy levels and orbitals
Atomic radius	a measure of the size of its atoms, usually the mean distance from the centre of the nucleus to the outermost electron shell

2. The periodic table.

An element is classified as s, p, d or f block according to its position in the Periodic Table, which is determined by its proton number so on the nature of the orbital into which the last electron of the atom enters.

3. Melting and boiling point across period 3

Trends in melting and boiling point are explained based on the intermolecular forces between the molecules.

	Structure	MP/BP
Metal (Na,Mg,Al)	Electrostatic	Low
Semi Metal (Si)	Macromolecular, strong covalent bonds	High
Non Metal (P4,S8,Cl2)	Small molecular substances, weak van der Waals, depend on size of molecule	Low
Noble gas (Ar)	Monoatomic, weak van der Waals	Low

4. Atomic radius

Decreases across period due to increased nuclear charge attracting shells. Increases down group due to more shells

5. Ionisation energy

lonisation energy increases across a period as similar distance from nucleus, same shielding but increased nuclear charge so stronger attraction.

Group 3 drop due to p orbital higher energy than s.

Group 6 drop due to repulsion of p orbital pair

lonisation energy decreases going down a group as more shielding and greater atomic radius.

Unit 2: Group II

unit z. Group	ווכ			
1. Physical properties				
Trends in group II, Beryl	llium is not typica	l of the group and it is not consider	ed here.	
Atomic radius	Increases	More shells		
Melting point	Decreases	Weaker metallic bonds due to larg	er atoms	
First ionisation energy	Decreases	Outer electron in higher energy le	vel, larger a	atom, more shells more shielding
2. Reactivity with wate	r			
Reactivity with water IN0	CREASES down the	e group.		
Magnesium reacts slow	y with liquid wate	r, but rapidly when heated in the p	esence of	steam.
	, , , , , , , , , , , , , , , , , , , ,	,, ,		
$ \begin{array}{c} 0 & +1 & +2 \\ M(s) + 2H_2O(l) \rightarrow M(OH)_2 \end{array} $	0 (aq) + H ₂ (g)	All equations similar down grou	ıp: beware	state symbol of hydroxide
3. Hydroxides and sulp	hates - solubility	/		
Hydroxides - M(OH) ₂ Sulphates - MSO ₄				
 Varying solubility in water. Colourless solids 				
Solubility INCREAS	ES as you descen	d the group.	•	Solubility DECREASES as you descend the group.
• pH of the hydroxic	de in water varies.		•	Carbonates thermally decompose to form MO(s) and $CO_2(g)$.
• pH increases as yo	ou descend the gr	oup.	•	Thermal stability increases as you descend the group.
Solubility of Mg(OH) ₂ des	scribed as sparing	ıly soluble	BaSO ₄	is described as insoluble
4. Application of group	II compounds			
Chemical	Common name	Applicatio	ns	
Mg(OH) ₂	Milk of magnesia	Treat indigestion, heartburns and wind.		
Ca(OH) ₂	Slaked lime	Neutralise fields and polluted lakes.		polluted lakes.
CaO and $CaCO_3$		Remove S ⁴	D ₂ from flu	e gases
BaSO ₄	Barium meal Contrast medium for gut X-ray.			
BaCl ₂	BaCl ₂ Test for sulfate ions: acidified with hydrochloric acid to remove carbonate ions		acidified with hydrochloric acid to remove carbonate ions	

Unit 3a: Group VII

1. Keywords	
Mean bond Enthalpy:	The average enthalpy change when one mole of a specific bond is broken in a range of different gaseous compounds.
Displacement:	A displacement reaction is a type of reaction in which part of one reactant is replaced by another reactant.
Electronegativity:	The power of an atom to attract the electrons in a covalent bond.

2. Physical properties		
Trends in group VII, Fluorine often d	oes strange thing	gs due to its size and electron density
Atomic radius	Increases	More shells
Boiling point	Increases	Larger molecules have stronger van der Waals forces which need more energy to break
Electronegativity	Decreases	Larger atoms so bonding pair further from nucleus, less strongly attracted
Bond enthalpy of X ₂ and HX	Decreases	Atoms larger, bond longer, less energy to break

3. Physical states

The physical state of the halogens are summarised below.

Symbol	In pure form	In non-polar solvents	In water
F	Pale yellow gas	(Reacts with solvents)	(Reacts with water)
CI	Pale green gas	Pale green solution	Pale green solution
Br	Dark red liquid	Orange solution	Orange solution
I	Grey solid	Purple solution	Insoluble

4. Oxidising abilities - Displacement reactions

The oxidising ability of the halogens decreases down the group. You cannot investigate the oxidising ability of Fluorine in aqueous solution because it reacts with water.

	F ·	Cl -	Br -	1.
F ₂	-	yes	yes	yes
Cl ₂	no	-	yes	yes
Br ₂	no	no	-	yes
I ₂	no	no	no	-

Unit 3b: Reactivity of halide ions and chlorine.

1. Keywords		3. Reaction w	vith concentrat	ed sulphuric a	cid			
Disproportionation:	a reaction in which a substance is simultaneously oxidised and reduced, giving two different products	Solid halides more acid to more product	react with conco give different p ts	entrated sulphu roducts based o	iric acid giving to their reducin	the hydrogen h g powers. lodio	alide. This then re le is more reducing	acts with g so gives
Precipitate (ppt):	deposited solid formed in a solution.	Halide ion	Reaction A to form MeHSO ₄	Reaction B to form SO ₂	Reaction C to form S	Reaction D to form H ₂ S	Observati	ons
		CI -	\checkmark	×	×	×	 Steamy fumes (ppt (MeHSO₄) 	(HCI)
The reducing ability o	f the halide ions increases down	Br -	\checkmark	\checkmark	×	×	 Steamy fumes (Brown fumes (E Pungent gas (Steam) 	(HBr) 3r ₂) O ₂)
Symbol F	Atomic radius (nm) 0.133	1.	\checkmark	\checkmark	\checkmark	\checkmark	 Steamy fumes (Black ppt (I₂) Rotten egg sme Yellow ppt (S) 	(HI) ell (H ₂ S)
Cl -	0.180	Reaction A	Me	$X(s) + H_2SO_4(l)$	\rightarrow MeHSO ₄ (s) +	HX(g)		
Br	0.195	Reaction B	2H+ (aq) + 2	X ⁻ (aq) + H ₂ SO ₄	$(I) \rightarrow SO_2(g) +$	2H ₂ O (l) +X ₂ (l)	Acid-ba	ase
▼ I ⁻	0.215	Reaction C	6H ⁺ (aq) + 6	SX^{-} (aq) + H ₂ SO	$_{4}$ (I) \rightarrow S(s) + 4H	₂ O (l) + 3X ₂ (s)	Acid-base ar	nd redox
		Reaction D	8H+ (aq) + 8X	$(aq) + H_2SO_4$	$(I) \rightarrow H_2S(g) + 4$	$H_2O(I) + 4X_2(s)$) Acid-base ar	nd redox

4. Reaction with silver ions

All metal halides (except fluoride) react with silver ions to form an insoluble precipitate. Dilute nitric acid is added before the reaction to get rid of any carbonate or hydroxide impurities.

 $Ag^{+}(aq) + X^{-}(aq) \rightarrow AgX(s)$

Symbol	Observation	Halide salt solubility
Cl -	White ppt	Dilute NH ₃
Br	Cream ppt	Concentrated NH_3
1-	Pale yellow ppt	Insoluble in NH ₃

5. Reactivity of chlorine	
Reactivity with water:	
$Cl_2(g) + H_2O(I) \Leftrightarrow HCI(aq) + HCIO(aq)$ "chlorine water"	Disproportionation reaction
Reactivity with water in sunlight:	
$2CI_2(g) + 2H_2O(I) \rightarrow 4HCI(g) + O_2(g)$	Goes from pale green to colourless
Alternative chlorination of swimming pools:	
$NaCIO(s) + H_2O(I) \rightleftharpoons Na^+(aq) + OH^-(aq) + HCIO(aq)$	Water is kept slightly acidic
Reactivity with alkali:	
$Cl_2(g) + 2NaOH(aq) \rightarrow NaCl(aq) + NaClO(aq) + H_2O(l)$	Disproportionation reaction

Unit 4: Period 3

1. Keywords	
Amphoteric:	able to react both as a base and as an acid.
2. Reactivity	
Reactivity with water (onl	y Na, Mg, Cl ₂):
$2Na(s) + 2H_2O(Mg(s) + 2H_2O(Mg(s) + 2H_2O(Mg(s) + H_2O(Mg(s) + H_2O$	I) → 2NaOH(aq) + H ₂ (g) →Mg(OH) ₂ (aq) + H ₂ (g) (g) →MgO(s) + H ₂ (g) ⇒ HCl(aq) + HClO(aq) Faster with steam
Reactivity with oxygen:	
$4Na(s) + O_2(g) \rightarrow 2Na_2O(s)$	Bright yellow flame, white solid sodium oxide
$2Mg(s) + O_2(g) \rightarrow 2MgO(s)$) Bright white flame, white solid magnesium oxide.
$4AI(s) + 3O_2(g) \rightarrow 2AI_2O_3(s)$	Bright white flame in a gas jar, white solid Al_2O_{3} .
$Si(s) + O_2(g) \rightarrow SiO_2(s)$	Reacts only when heated.
$4P(s) + 5O_2(g) \rightarrow P_4O_{10}(s)$	White flame and white fumes
$S(s) + O_2(g) \rightarrow SO_2(g)$	Blue flame, smelly gas

3. Period 3 oxides melting points

Na ₂ O/1548 K	Strong attraction between oppositely charged ions in ionic lattice = high melting point
MgO/ 3125K	Smaller and more highly charged than Na so stronger attraction to the oxide ions
Al ₂ O ₃ /2345K	lonic structure with covalent character. Very high charge density on the small Al
SiO ₂ /1883K	Giant covalent structure. Strong covalent bonds Si-O.
P ₄ O ₁₀ /573K	Simple molecular compounds. Weak van der Waals = low melting point
SO ₃ /290К	Simple molecule Weak van der Waals = low melting point
SO ₂ /200K	Simple molecule. Weak van der Waals = low melting point

4. Reacti	vity of Period 3 oxides with acids/bases	
Na ₂ O	$Na_2O(s) + 2HCI(aq) \rightarrow 2NaCI(aq) + H_2O(I)$	Alkali
MgO	$MgO(s) + 2HCI(aq) \rightarrow MgCI_2(aq) + H_2O(I)$	Alkali
AI_2O_3	$AI_2O_3(s) + 6HCI(aq) \rightarrow 2AICI_3(aq) + 3H_2O(I)$	Amphoteric
	$AI_2O_3(s) + 2NaOH(aq) + 3H_2O(I) \rightarrow 2NaAI(OH)_4(aq)$	
SiO ₂	$SiO_2(s) + 2NaOH(aq) \rightarrow Na_2SiO_3(aq) + H_2O(I)$	Weak acid
P_4O_{10}	$P_4O_{10}(s)$ + 12NaOH(aq) → 4Na ₃ PO ₄ (aq) + 6H ₂ O(I)	Acid
SO ₂	$SO_2(g) + 2NaOH(aq) \rightarrow Na_2SO_3(aq) + H_2O(I)$	Acid
SO_3	$SO_3(g) + 2NaOH(aq) \rightarrow Na_2SO_4(aq) + H_2O(I)$	Acid

S. Reacti	vity of Period 5 oxides with water	
Na ₂ O	$Na_2O(s) + H_2O(l) \rightarrow 2NaOH(aq)$	pH = 14
MgO	$MgO(s) + H_2O(I) \rightarrow Mg(OH)_2(aq)$	pH = 9
AI_2O_3	Insoluble no reaction	pH = 7
SiO ₂	Insoluble	pH = 7
P_4O_{10}	$P_4O_{10}(s)$ + $6H_2O$ (I) → $4H_3PO_4(aq)$	pH = 1-2
SO ₂	$SO_2(g) + H_2O(I) \rightarrow H_2SO_3(aq)$	pH = 2-3
SO ₃	$SO_3(g) + H_2O(I) \rightarrow H_2SO_4(aq)$	pH = 0-1

SiO₂

P4O10

SO3

 SO_2

3500

3000

2500

10 2000

1500 melting

500

0

Na₂O

MgO

Al₂O₃

oxides of Na to S

Sulfuric(IV) acid H_2SO_3

Sulfuric(VI) acid H₂SO₄

 $\begin{array}{c} Phosphoric(V) \ acid \\ H_3PO_4 \end{array}$

Unit 5a: Transition metals

		A transition metal is an element that form	hs at least one stable ion with a darti	aliv tuli d-shell.		
1. Keywords						
Complex ions:	central metal atom or ion surrounded by ligands, which are held by dative covalent bonds	 When the fourth period metals form ions the 4s electrons are the first to be lost then 3d electrons. Scandium and Zinc are not considered to be transition metals. Scandium forms only a 3+ ion [Ar] 4s⁰ 3d⁰ Zinc forms only a 2+ ion [Ar] 4s⁰ 3d¹⁰ Copper is a transition metal because its +2 ion has an incomplete d orbital. [Ar] 4s⁰ 3d⁹ 				
Coordination number:	is the number of co-ordinate bonds to the central metal atom or ion.	Chemical properties Form coloured ions Form complexes Catalysts 	Physical properties • Shiny • Strong • Hard			
Ligand: is an ior	is an ion or molecule that forms	Variable oxidation state	Good condu	uctors		
a co-ordinate bond with a transition metal by donating a pair of electrons		3. Complex ion formation				
Chelate:	compound containing a ligand bonded to a central metal atom at two or more points.	All transition metals for co-ordinate bonds by accepting electron pairs from other ions or molecules generally called ligands. Different ligands form different strength bonds.				
Coordinate (dative) bond	A type of covalent bond where both electrons are donated by one atom	Monodentate ligands (single co- ordinate bond): • H ₂ O (Aqua)] small, similar size • NH ₃ (Ammino)] and uncharged • OH (Hydroxy)	 Bidentate (two atoms that each donate a lone pair of electrons to form co-ordinate bonds): H₂NCH₂CH₂NH₂ ethane-1,2-diamine 	 Multidentate (many co-ordinate bonds): EDTA ⁴⁻ which can form 6 co-ordinate bonds 		

4. Haem

Haem is an iron(II) complex with a multidentate ligand. Oxygen forms a co-ordinate bond to Fe(II) in haemoglobin, enabling oxygen to be transported in the blood. Carbon monoxide is toxic because it replaces oxygen co-ordinately bonded to Fe(II) in haemoglobin.

2. Classification

Monodentate ligands (single co- ordinate bond): • H ₂ O (Aqua) small, similar size • NH ₃ (Ammino) and uncharged • OH ⁻ (Hydroxy) • CN ⁻	 Bidentate (two atoms that each donate a lone pair of electrons to form co-ordinate bonds): H₂NCH₂CH₂NH₂ ethane-1,2-diamine C₂O₄²⁻ ethanedioate 	 Multidentate (many co-ordinate bonds): EDTA ⁴⁻ which can form 6 co-ordinate bonds
• Cl ⁻ large	0,204 0000000000	

The charge of the complex ion depends on the charge of the transition metal and on the charge and number of the ligand.

5. Chelate effect

When bidentate or multidentate ligands take the place of monodentate, there are more products than reactants, the number of particles increases, hence the entropy of system increases. The products are thermodynamically more stable.

The enthalpy change of these reaction is very small but the increase in entropy makes the reaction possible.

Unit 5b: Reactivity of complex ions

1. Keywords Amphoteric dissolves in both acids and bases so therefore has both acidic and basic character

Hydrolysis	the chemical breakdown of a compound due to reaction with water.
Metal-aqua ion	The complex ion formed when water molecules form coordinate bonds with a metal ion

2. Acidity

The acidity of $[M(H_2O)_6]^{3+}$ is greater than that of $[M(H_2O)_6]^{2+}$ M^{3+} smaller and more positive than M^{2+} M³⁺ has greater charge density so more strongly attracts electrons on metal-oxygen bond More polarisation of water molecules. H⁺ more easily lost as OH bond weaker

3. Reactions with OH⁻

Reaction with OH- to produce precipitate is called hydrolysis- often indicated by use of EXCESS NaOH Reactions are equilibria so can get single and multiple substitutions If precipitate not produced, product is aqueous and charged Only aluminium precipitate dissolves- amphoteric: acting as an acid

M ³⁺ aqua ion	$[M(H_2O)_6]^{3+}_{(aq)} + 3OH^{-}_{(aq)} \rightarrow M(H_2O)_3(OH)_{3(s)} + 3H_2O_{(l)}$
M ²⁺ aqua ion	$[M(H_2O)_6]^{2+}_{(aq)} + OH^{-}_{(aq)} \rightarrow M(H_2O)_4(OH)_{2(s)} + H_2O_{(l)}$
Ammonia ppt dissolving	$AI(H_2O)_3(OH)_{3 (s)} + OH^{-}_{(aq)} \rightarrow [AI(H_2O)_2(OH)_4]^{-}_{(aq)}$
4. Reactions with NH_3	
Ammonia in water releases OH- NH _{3(aq)} + H ₂ O ₍₁₎ \Rightarrow NH ₄ ⁺ + OH ⁻ _(aq) Reactions the same as with OH- Aluminium precipitate does not Copper precipitate dissolves- lig	dissolve and exchange
M ³⁺ aqua ion	$[M(H_2O)_6]^{3+}_{(aq)} + 3OH^{-}_{(aq)} \rightarrow M(H_2O)_3(OH)_{3(s)} + 3H_2O_{(l)}$
M ²⁺ aqua ion	$[M(H_2O)_6]^{2+}_{(aq)} + OH^{-}_{(aq)} \rightarrow M(H_2O)_4(OH)_2_{(s)} + H_2O_{(l)}$

 $Cu(H_2O)_4(OH)_{2(s)} + 4NH_{3(aq)} \rightarrow [Al(H_2O)_2(NH_3)_4]^{-}_{(aq)} + 2OH^{-}_{(aq)} + 2H_2O_{(l)}$

5. Reactions with Na₂CO₃

Copper ppt

dissolving

 M^{3+} ions fizz due to CO_2 released- they are acting as an acid M²⁺ ions do not fizz M³⁺ agua ion $2[M(H_2O)_6]^{3+}_{(aq)} + 3CO_3^{2-}_{(aq)} \rightarrow 2M(H_2O)_3(OH)_3_{(s)} + 3H_2O_{(l)} + 3CO_2_{(q)}$ $[M(H_2O)_6]^{2+}_{(aq)} + CO_3^{2-}_{(aq)} \rightarrow MCO_3_{(s)} + 6H_2O_{(l)}$ M²⁺ agua ion

6. Amphoteric aluminium

Acting as an acid

 $AI(H_2O)_3(OH)_3 (s) + OH^{-} (ag) \rightarrow [AI(H_2O)_2(OH)_4]^{-} (ag)$

 $AI(H_2O)_3(OH)_{3(s)} + 3HCI_{(ag)} \rightarrow [AI(H_2O)_6]^{3+}_{(ag)} + 3CI^{-}_{(ag)}$ Acting as a base.

 $AI(H_2O)_3(OH)_3 (s) + H^+ (a_0) \rightarrow [AI(H_2O)_4 (OH)_2]^+ (a_0) + H_2O (l)$

2. Complex ion shapes

The coordination number dictates the shape of the complex ions.

Coordination number	2	4	6	$\begin{bmatrix} CN & CN \\ NI \end{bmatrix} 2 - \begin{bmatrix} CI \\ H_3N & H_3 \end{bmatrix}^{3+}$
Shape	Linear	Tetrahedral or square planar	Octahedral	$\begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & & $
				- Square planar can show cis-trans isomerism if two different ligands present

The silver complex in Tollens' reagent is linear

Unit 5d: Properties of complexes

1. Coloured ion formation

lons with d^{10} or d^0 are colourless, those partly filled tend to be coloured.

Colour arises when d electrons in the ground state absorb energy from visible light which promotes them to an excited state: a higher 3d sublevel. The rest of the frequencies are transmitted or reflected; hence the complementary colour is observed via transmission or reflection.

Factors affecting colour by altering ΔE :

- Size & type of ligand
- Oxidation state
- Complex shape
- · Coordination number

The energy difference between the ground state and the excited state of the d electrons is given by

```
∆E = hv = <u>hc</u>
```

```
\Delta E = energy absorbed (J)
```

h =Planck's constant (6.63 x 10⁻³⁴ J s)

v = frequency of light absorbed (Hz)

Colorimetry: we can then determine the concentration by comparing our sample against known concentrations of the same metal ion / ligand.

- 1. Make up solutions of known concentration.
- 2. Measure absorption of each known solution
- 3. Plot a graph of absorption vs concentration
- 4. Measure absorption of unknown and compare on the graph to give a concentration reading

2. Variable oxidation state

Transition elements show variable oxidation states.

Vanadium species in oxidation states IV, III and II are formed by the reduction of vanadate(V) ions by zinc in acidic solution.

 $c = speed of light (3.00 \times 10^8 \text{ m s}^{-1})$

 λ = wavelength of light absorbed (m)

The redox potential for a transition metal ion changing from a higher to a lower oxidation state is influenced by pH and by the ligand.

The reduction of $[Ag(NH_3)_2]^+$ (Tollens' reagent) to metallic silver is used to distinguish between aldehydes and ketones.

Since many transition metal compounds are coloured, we can use colour changes as self indicators in titrations. The titration using KMnO ₄ is a typical redox titration.	$Mn^{2+} + 4H_2O + 5Fe^{3+} \rightarrow MnO_4^- + 8H^+ + 5Fe^{2+}$
The end point is the first permanent pink i.e. the first sight of the MnO ₄ ⁻ ion. The pink colour is not due to phenolphthalein! Typical scenarios which appear in exam questions are: concentration of iron solutions, % iron in iron tablets and % iron in a steel sample.	$2MnO_4^- + 16H^+ + 5C_2O_4^{2-} \rightarrow 2Mn^{2+} + 8H_2O + 10CO_2$

Compounds of Vanadium

Colour	yellow	blue	green	violet
Oxidation state	+5	+4	+3	+2
Aqueous ion	vo2.	VO2-	V3+	V2+

Compounds of Chromium

Aqueous ion	Cr2072 (ag)	CrO42 (ag)	Cr3+	Cr2+
Oxidation state	+6	+6	+3	+2
Colour	Orange	Yellow	Green	Blue

Unit 5e: Catalysis

1. Keywords	
Catalyst:	is a substance that increases the rate of a chemical reaction by providing an alternative route with a lower activation energy. The catalyst is unchanged by the reaction.
Heterogeneous catalyst:	catalyst is in a different phase from the reactants and the reaction occurs at active sites on the surface
Homogeneous catalyst:	is in the same phase as the reactants. The reaction happens via an intermediate species.
Support medium	used to maximise the surface area of a catalyst and minimise cost
Catalytic poisoning	impurities blocking the active sites of a heterogeneous catalyst, reducing efficiency. Catalyst can also be lost from the support. This has a cost implication.
Autocatalysis	where the catalyst is a product of the reaction. As a result, the rate of reaction increases over time as more product, and therefore catalyst, is produced.

2. Catalytic activity

Transition metals are good as catalysts either due to a change in oxidation state or they adsorb other substances onto the surface. A partially filled d orbital can be used to form bonds with adsorbed reactants.

Heterogeneous examples Haber process: $3H_2 + N_2 \rightleftharpoons 2NH_3$ Catalyst Fe

Contact process: $SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$ Catalytic cycle: $SO_2 + V_2O_5 \rightarrow SO_3 + V_2O_4$ $V_2O_4 + \frac{1}{2}O_2 \rightarrow V_2O_5$ Catalyst vanadium(V) oxide, vanadium changes oxidation state

Homogeneous example $2I + S_2O_8^{2-} \rightarrow 2SO_4^{2-} + I_2$ Needs catalyst due to repulsion of two negative ions, high activation energy Catalytic cycle: $2Fe^{2+} + S_2O_8^{2-} \rightarrow 2SO_4^{2-} + 2Fe^{3+}$ $2Fe^{3+} + 2I^- \rightarrow I_2 + 2Fe^{2+}$ Catalyst Fe^{2+} changes oxidation state

1 Adsorption of first reactant onto catalyst active site

2 Adsorption of second reactant onto catalyst active site

3 Bonds weaken, reaction takes place

4 Products leave surface

3. Autocatalysis

Autocatalysis example $2MnO_4^- + 6H^+ + 5C_2O_4^{-2-} \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$

The reaction starts slowly due to no catalyst. Catalyst Mn²⁺ speeds up reaction when produced. Rate falls when reactants used up.

Unit 6: Reactions of ions in aqueous solution

Metal aqua-ion	With OH ⁻ or NH _{3(aq)}	With excess OH ⁻ (aq)	With excess NH _{3(aq)}	With Na ₂ CO _{3(ag)}
[Fe(H ₂ O) ₆] ²⁺ (ag)	[Fe(H ₂ O) ₄ (OH) ₂] (s)	No change, precipitate remains	No change, precipitate remains	FeCO₃(s)
[Fe(H ₂ O) ₆] ³⁺ (aq) Yellow	[Fe(H ₂ O) ₃ (OH) ₃] (s) Red-Brown	No change, precipitate remains	No change, precipitate remains	[Fe(H ₂ O) ₃ (OH) ₃] (s) Red-Brown
[Cu(H ₂ O) ₆] ²⁺ (ag)	[Cu(H ₂ O) ₄ (OH) ₂] (s)	No change, precipitate remains	[Cu(NH ₃) ₄ (H ₂ O) ₂] ²⁺ (ag) Deep-blue	CuCO₃(s) Blue-green
[Al(H ₂ O) ₆] ³⁺ (aq) Colourless	[Al(H ₂ O) ₃ (OH) ₃] (s) White	[Al(OH)4] ⁻ (ag)	No change, precipitate remains	[Al(H ₂ O) ₃ (OH) ₃] (s) White

Colours of Vanadium oxidation states

