## Unit 1: Atomic Structure

| 1. Keywords                           |                                                                                                                                   |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Mass Number:                          | Total number of protons and neutrons (bigger no.)                                                                                 |
| Atomic number:                        | number of protons (smaller no.) also<br>the number of electrons in an atom.                                                       |
| lsotope:                              | An atom that has the same number of protons but a different number of neutrons                                                    |
| lonisation:                           | Removal of one or more electrons<br>(endothermic)                                                                                 |
| First lonisation<br>Energy:           | The energy needed to remove 1<br>electron from each atom in 1 mole of<br><b>gaseous</b> atoms.<br>$M(g) \rightarrow M^+(g) + e^-$ |
| Second<br>ionisation<br>energy:       | The energy needed to remove 1<br>electron from each atom in 1 mole of<br>gaseous +1 ions.<br>$M^+(g) \rightarrow M^{2+}(g) + e^-$ |
| Successive<br>ionisation<br>energies: | Removing each electron in turn from<br>a mole of gaseous atoms. Provides<br>evidence of energy levels and orbitals                |
| Mass<br>spectrometry                  | Technique used to calculate the mass of atoms and molecules                                                                       |



2. Time of Flight Mass Spec

| Time of Flight Ma  | 55 Spec.                                                                                                                |
|--------------------|-------------------------------------------------------------------------------------------------------------------------|
| lonisation         | Sample dissolved and pushed through nozzle at high pressure and 4000v.<br>As solvent evaporates particles gain a H+ ion |
| Acceleration       | + ions accelerated by -5000v electric field. Have a fixed kinetic energy                                                |
| lon drift          | Region of no electric field, so drift (lighter move faster, heavier ions slower.)                                       |
| Detection          | + ions discharge creating a flow of electrons in the detector which registers the current and plots the mass spectrum.  |
|                    |                                                                                                                         |
| Rules for electron | configuration                                                                                                           |

| 1 | Aufbau "building up" principle                    | Electrons always fill the lowest energy level first                     |
|---|---------------------------------------------------|-------------------------------------------------------------------------|
| 2 | Hund's rule of maximum<br>multiplicity (bus rule) | Electrons will fill the empty orbital of an energy level before pairing |
| 3 | Pauli's exclusion principle                       | When electrons pair in an orbital they have opposite spin               |

| 4. Energy leve | s          |          |           |
|----------------|------------|----------|-----------|
| Energy level   | Sub levels | Orbitals | Electrons |
| 1              | S          | 1        | 2         |
| 2              | s,p        | 1,3      | 8         |
| 3              | s,p,d      | 1,3,5    | 18        |
| 4              | s,p,d      | 1,3,5    | 18        |



REMEMBER the 4s fills before the 3d (use you periodic table to remind you)

| 5. Dro | 5. Drops in 1 <sup>st</sup> ionisation energies across period 3 |                                 |                                                                         |  |  |
|--------|-----------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------|--|--|
| Ar     | symbol                                                          | Electron<br>config              | Reason for drop?                                                        |  |  |
| 13     | Al                                                              | 3s <sup>2</sup> 3p <sup>1</sup> | Electron is in p orbital further<br>from nucleus to easier to<br>remove |  |  |
| 16     | S                                                               | 3s <sup>2</sup> 3p <sup>4</sup> | Electron is paired in 3p orbital so easier to remove                    |  |  |



## Unit 2: Amount of substance

| 1. Keywords                      |                                                                                                                                              |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Relative Atomic<br>Mass: (Ar)    | Average mass of an atom $\frac{1}{1_{12}}$ th Carbon 12                                                                                      |
| Relative Molecular<br>Mass: (Mr) | Average mass of a molecule<br>1/12 th Carbon 12                                                                                              |
| Relative Isotopic<br>Mass:       | Average mass of an isotope $\frac{1}{12}$ th Carbon 12                                                                                       |
| Avogadro's<br>constant           | The number of particles that make up 1 mole of a substance.                                                                                  |
| Mole                             | The unit the amount of a substance is<br>measured in. The number of particles need to<br>make 12.00g of Carbon-12                            |
| Concentration                    | The amount of particles in a fixed volume.<br>Measured in moles per litre (Mol dm <sup>-3</sup> )                                            |
| ldeal gas                        | Ideal gases are any gas which behaves in<br>accordance with the ideal gas equation. It<br>does not matter what substances are in the<br>gas. |
| Empirical formula                | Simplest whole number ratio of the elements in a compound                                                                                    |
| Molecular formula                | The actual ratio of elements in a specific compound. Should add up to the Mr.                                                                |
| Balanced full<br>equation        | A balanced chemical equation showing all atoms and their relative amounts and states                                                         |
| lonic equation                   | An equation which only shows the species which change during a chemical reaction                                                             |
| Spectator ions                   | The ions omitted from an ionic equations because they are not involved                                                                       |
| Atom economy                     | <u>Mr desired product</u> x100<br>Mr of all reactants                                                                                        |
|                                  |                                                                                                                                              |

| 2. Calculating moles    |                      | 3. Calculating concentration           |                      |  |
|-------------------------|----------------------|----------------------------------------|----------------------|--|
| $Mass = Mr \ x \ moles$ |                      | $Concentration = \frac{moles}{Volume}$ |                      |  |
| Mass                    | g                    | V 014                                  |                      |  |
|                         |                      | Concentration                          | Mol dm <sup>-3</sup> |  |
| Mr                      | g mole <sup>-1</sup> | moles                                  | moles                |  |
| moles                   | moles                | Volume                                 | dm <sup>3</sup>      |  |
|                         |                      |                                        |                      |  |

| 4. Ideal gas equat | ion               |                |                              |
|--------------------|-------------------|----------------|------------------------------|
|                    | pV =              | = nRT          |                              |
| p                  | Pressure          | Pa (pascals)   | 1 atm = 1x10 <sup>5</sup> pa |
| V                  | Volume            | m <sup>3</sup> | $1 m^3 = 1 \times 10^6 cm^3$ |
| n                  | No. of moles      | Moles          |                              |
| R                  | Boyles gas const. | J/mol K.       | 8.314                        |
| Т                  | Temperature       | K (kelvin)     | T °C + 273                   |

### 5. Ratio method for titration calculations

 $m_2 C_1 V_1 = m_1 C_2 V_2$ Mole co-efficient (ratio) т Mol dm<sup>-3</sup> Concentration С V Volume cm<sup>3</sup>

# Unit 3: Bonding

| 1. Keywords                        |                                                                                                                                   |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| lonic bond                         | Bond formed by the transfer of<br>electrons from a metal to a non-metal.<br>Strong attraction between oppositely<br>charged ions. |
| Covalent bond                      | Bond between non-metals. A shared pair of electrons                                                                               |
| Metallic bond                      | Positive metal ions in a 'sea' of delocalised electrons                                                                           |
| Macromolecular<br>(Giant covalent) | Large covalently bonded molecule. Eg<br>diamond, graphite, silicon dioxide                                                        |
| Molecular<br>covalent<br>molecule  | Small covalently bonded molecules<br>that are held together by<br>intermolecular forces. Eg lodine,<br>water, carbon dioxide.     |
| Co-ordinate<br>bond                | A type of covalent bond where both electrons are donated by one atom.                                                             |
| Bonding pair                       | A pair of electrons in a covalent bond                                                                                            |
| Lone pair                          | A pair of un-bonded electrons.<br>Repel more than bonding pairs                                                                   |
| Electronegativity                  | The power of an atom to attract the electrons in a covalent bond                                                                  |
| Polar covalent<br>bond             | A bond with a unequal distribution of<br>electrons due to a difference in<br>electronegativity of the bonding atoms               |
| Intermolecular<br>forces           | The forces between molecules. They are responsible for the trends in melting and boiling points of substances                     |

| 2. Common anions |                               |           |                 |  |
|------------------|-------------------------------|-----------|-----------------|--|
| Sufate           | SO4 <sup>2-</sup>             | Hydroxide | OH <sup>.</sup> |  |
| Carbonate        | CO <sub>3</sub> <sup>2-</sup> | Ammonium  | $NH_4^+$        |  |
| Nitrate          | NO <sub>3</sub> -             |           |                 |  |

| 3. Intermolecular forces |                             |                                                                          |                                                                          |                                   |
|--------------------------|-----------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------|
| Increasing<br>strength   | Van der<br>Waals            | Temporary dipoles<br>induce<br>complimentary<br>dipoles in<br>neighbours | Happens in all<br>molecules                                              | Eg. Alkanes                       |
|                          | Permanent<br>dipole- dipole | Attraction between<br>slightly positive and<br>negative ends of<br>bond  | Happens in any<br>asymmetric bond<br>with different<br>electronegativity | Eg. Hydrogen<br>chloride          |
|                          | Hydrogen<br>bonding         | Attraction between<br>slightly positive and<br>negative ends of<br>bond  | Happens when H<br>bonded to O, N, F<br>only                              | Eg. Water,<br>Ammonia,<br>Alcohol |

| . VSEPR molecular shapes |                         |                  |               |                         |         |                    |
|--------------------------|-------------------------|------------------|---------------|-------------------------|---------|--------------------|
| Electron<br>pairs        | Geometry                | Bonding<br>pairs | Lone<br>pairs | Shape                   | Angle   | Example            |
| 2                        | Linear                  | 2                | 0             | Linear                  | 180     | BeCl <sub>2</sub>  |
| 3                        | Trigonal<br>planar      | 3                | 0             | Trigonal planar         | 120     | SO <sub>3</sub>    |
| 4                        | Tetrahedral             | 4                | 0             | Tetrahedral             | 109.5   | CH <sub>4</sub>    |
|                          |                         | 3                | 1             | Trigonal<br>pyramidal   | 107     | NH <sub>3</sub>    |
|                          |                         | 2                | 2             | V-shape                 | 104.5   | H <sub>2</sub> O   |
| 5                        | Trigonal<br>bipyramidal | 5                | 0             | Trigonal<br>bipyramidal | 120, 90 | PCI <sub>5</sub>   |
|                          |                         | 4                | 1             | See-saw                 | 120, 90 | TeCl <sub>4</sub>  |
|                          |                         | 3                | 2             | T-shape                 | 87.5    | CIF <sub>3</sub>   |
| 6                        | Octahedral              | 6                | 0             | Octahedral              | 90      | SF <sub>6</sub>    |
|                          |                         | 4                | 2             | Square planar           | 90      | ICl <sub>4</sub> - |

## Unit 4: Energetics

|                                                                   | 5                                                                                                                                                                    |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Keywords                                                       |                                                                                                                                                                      |
| Enthalpy change<br>∆H                                             | Heat energy change at constant pressure                                                                                                                              |
| Standard<br>enthalpy change<br>ΔH <sub>298</sub> °                | Enthalpy change under standard conditions eg 100Kpa and 298K                                                                                                         |
| Standard<br>enthalpy change<br>of formation<br>Δ <sub>f</sub> H°  | The enthalpy change when one mole<br>of substance is formed from it's<br>elements under standard conditions                                                          |
| Standard<br>enthalpy change<br>of combustion<br>Δ <sub>c</sub> H° | The enthalpy change when one mole<br>of substance is completely burnt in<br>oxygen. Reactants and products in<br>their standard states under standard<br>conditions. |
| Calorimetry                                                       | The process of measuring the heat from a chemical reaction                                                                                                           |
| Hess' law                                                         | The enthalpy change of a reaction is independent of the route taken                                                                                                  |
| Mean bond<br>enthalpy                                             | The average enthalpy change when<br>one mole of a specific bond is broken<br>in a range of different <b>gaseous</b><br>compounds                                     |

| 2. Calorimetry   |            |            |                                    |
|------------------|------------|------------|------------------------------------|
| $q = mc\Delta T$ |            |            |                                    |
| q                | Energy / J | С          | Specific heat capacity /<br>J/KgºC |
| т                | mass / g   | $\Delta T$ | Temperature change / °C            |

3. Enthalpy of formation cycle 4. Enthalpy of combustion cycle Route 1

Start

2SO<sub>2(g)</sub>



Route 1



## Unit 5: Kinetics

| 1. Keywords          |                                                                                                                   |
|----------------------|-------------------------------------------------------------------------------------------------------------------|
| Collision theory     | For a reaction to occur the reactants<br>have to collide with sufficient energy<br>and in the correct orientation |
| Activation<br>energy | The minimum energy needed for a<br>collision to create a successful<br>reaction                                   |
| Rate of reaction     | The amount of product made or reactant used up in a given time                                                    |

| 2. Factors the increase the rate of reaction |                                                                                                                                                 |  |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|
| concentration                                | More particles in a given space so more collisions and increased rate                                                                           |  |
| Pressure                                     | More particles in a given space so more collisions and increased rate                                                                           |  |
| Surface area                                 | High surface area increases the<br>number of particles available to collide<br>so increases rate                                                |  |
| Temperature                                  | Increases the kinetic store of the<br>particles so they collide more<br>frequently and with a greater<br>proportion above the activation energy |  |
| Catalyst                                     | Speed up reaction by providing an<br>alternative route with a lower<br>activation energy                                                        |  |



## Unit 6: Equilibria Kc

| 1. Keywords                 |                                                                                                                                           |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Equilibrium                 | When a reversible reaction has the<br>same rate in both directions and the<br>concentrations do not change.<br>Happens in a closed system |
| Le Charteliers<br>principle | If a change is made to a system at<br>equilibrium then the equilibrium will<br>shift to oppose that change                                |



| 2. Le Charteliers principle |                                           |                                                                  |                                                                         |  |
|-----------------------------|-------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|--|
| Factor                      | Effect on<br>equilibrium                  | Reason                                                           | Example                                                                 |  |
| Pressure<br>Increase        | Shifts to side with<br>least moles        | To decrease the pressure to reach the equilibrium pressure again | It will shift to the right as it<br>has the least moles                 |  |
| Pressure<br>Decrease        | Shifts to side with most moles            | To increase the pressure                                         | It will shift to the left as it<br>has the most moles                   |  |
| Concentration<br>Increase   | Shifts to other<br>side                   | To decrease the<br>concentration of what was<br>increased        | If the concentration of A is<br>increased it will shift to the<br>right |  |
| Concentration<br>Decrease   | Shifts to the same<br>side                | To increase the<br>concentration of what was<br>decreased        | If the concentration of A is<br>decreased it will shift to the<br>left  |  |
| Temperature<br>Increase     | Shifts in the<br>endothermic<br>direction | To cool down the reaction                                        | It will shift to the left as<br>this is the endothermic<br>direction    |  |
| Temperature<br>Decrease     | Shifts in the<br>exothermic<br>direction  | To heat up the reaction                                          | It will shift to the right as it is the exothermic direction            |  |

4. Units of Kc



## Unit 7: Redox

| 1. Keywords        |                                                                                                      |  |
|--------------------|------------------------------------------------------------------------------------------------------|--|
| Oxidation          | The loss of electrons, gain of oxygen, increase in oxidation number                                  |  |
| Reduction          | The gain of electrons, loss of oxygen, decrease in oxidation number                                  |  |
| Disproportionation | When one species is both oxidised and reduced simultaneously                                         |  |
| Half equation      | A balanced equation which only shows<br>either the oxidation or reduction during<br>a redox reaction |  |
| Oxidising agent    | A substance which oxidises another substance and in doing so becomes reduced                         |  |
| Reducing agent     | A substance which reduces another substance and in doing so becomes oxidised                         |  |

| 2. | Rules | to | assign | oxidation | numbers |
|----|-------|----|--------|-----------|---------|
|    |       |    |        |           |         |

| Element         | 0                         |
|-----------------|---------------------------|
| Mono atomic ion | Charge on the ion         |
| Hydrogen        | +1 (unless hydride = -1)  |
| Oxygen          | -2 (unless peroxide = -1) |
| Fluorine        | -1                        |
| Group 1         | +1                        |
| Group 2         | +2                        |
| Group 7         | -1 mostly                 |

### 3. Steps to balance half equations

- 1 Balance the existing atoms
- 2 Determine the oxidation state before and after the reaction
- 3 Add electrons to balance the change in oxidation state
- 4 If it is a complex ion add H<sup>+</sup> ions to produce 1 water for every oxygen
- 5 Check the atoms and charge balance both sides

### 4. Steps to combine half equations

- 1 Determine which is being oxidised and which is being reduced
- 2 Write out the balanced half equations
- 3 Factor up the half equations until the number of electrons balance
- 4 Combine the half equations
- 5 Cancel any redundant species

# Unit 8: Thermodynamics

| 1. Keywords                                                           |                                                                                                                                                           |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Standard<br>enthalpy change<br>of atomisation<br>$\Delta_{\rm at}$ H° | The enthalpy change when one mole of <b>gaseous</b> atoms are formed from a substance at its standard states                                              |
| lonisation<br>enthalpy Δ <sub>ie</sub> H <sup>1st</sup>               | The enthalpy change when one mole of<br>ions are formed from one moles of<br><b>gaseous</b> atoms under standard<br>conditions                            |
| Electron affinity<br>∆H <sub>ea</sub> ¹st                             | The enthalpy change when one mole of <b>gaseous</b> atoms gain one mole of electrons under standard conditions                                            |
| Lattice<br>association<br>enthalpy A <sub>Lf</sub> H                  | The enthalpy change when one mole of ionic lattice is <i>formed</i> from its <b>gaseous</b> ions under standard conditions                                |
| Lattice<br>dissociation<br>enthalpy A <sub>Ld</sub> H°                | The enthalpy change when one mole of<br>an ionic lattice dissociates into isolated<br>gaseous ions under standard conditions                              |
| Hydration<br>enthalpy Δ <sub>Hy</sub> H°                              | The enthalpy change when one moles of<br>gaseous ions are completely surrounded<br>by water                                                               |
| Enthalpy of<br>solution Δ <sub>sol</sub> H°                           | The enthalpy change when I mole of<br>solute is completely dissolved in solvent<br>so that the ions are infinitely diluted,<br>under standard conditions. |
| Entropy                                                               | The measure of disorder within a system measured in J mol <sup>-1</sup>                                                                                   |
| Entropy change<br>∆S                                                  | $\Sigma$ entropy products – $\Sigma$ entropy reactants                                                                                                    |
| Gibbs free<br>energy ΔG                                               | A measure of the feasibility of a reaction. For a reaction to be feasible $\Delta G$ must $\leq 0$                                                        |

| 2. | Born-Haber cy        | cle: basic layout             |                            |           | 4. Gibb |
|----|----------------------|-------------------------------|----------------------------|-----------|---------|
| 1  | Atomise              |                               |                            |           |         |
| 2  | Atomise              |                               |                            |           |         |
| 3  | lonise               |                               |                            |           |         |
| 4  | Electron affin       | ity                           |                            |           |         |
| 5  | Lattice entha        | Іру                           |                            |           |         |
| 6  | Enthalpy of f        | ormation                      |                            |           |         |
|    |                      | ( )                           | 1                          | _         |         |
|    | Na*<br>3 +502 kJ/mol | r(g) + Cl(g) + e <sup>-</sup> | -355 kJ/mol                |           |         |
|    | ∩ Na(g) + Cl         | (g)                           | 4                          | r         |         |
| Ι. | 2 +121 kJ/mol        | N                             | a+(g) + Cl-(g)             |           |         |
|    | Na(g) + 1/2          | 2 Cl <sub>2</sub> (g)         |                            |           |         |
| .  | +107 kJ/mol          |                               | -786 kJ/mol                | _         |         |
| -  | 6<br>-411 kJ/mol     |                               |                            | <b>)</b>  |         |
|    |                      | NaCl(s)                       |                            |           |         |
|    |                      |                               |                            |           |         |
|    |                      |                               |                            |           |         |
| 3. | Born-Haber cy        | cle: enthalpy of s            | olution                    |           |         |
|    |                      | $K^{+}(g) + CI^{-}(g)$        |                            |           |         |
|    |                      | -322 Hyd                      | ration of K <sup>+</sup>   |           |         |
|    |                      | K-                            | $(aq) + Cl^{-}(g)$         |           |         |
|    | Lattice antholou     | -363 Hy                       | dration of CI-             |           |         |
|    | Latuce enthalpy      | ×κ                            | +(aq) + CI-(aq)            | 1         |         |
|    |                      |                               | 4                          |           |         |
|    |                      | +26                           | Enthalpy cha<br>of solutio | inge<br>n |         |
|    |                      | KCI(s)                        |                            |           |         |

| ibbs free  | energy       |                                         |
|------------|--------------|-----------------------------------------|
| $\Delta G$ | $= \Delta H$ | $-T\Delta S$                            |
| $\Delta G$ | G<br>K       | ibbs free energy /<br>J                 |
| $\Delta H$ | Er<br>Kj     | nthalpy change /<br>J mol <sup>.1</sup> |
| Т          | Т            | emperature / K                          |
| ΔS         | Er<br>J      | ntropy change /<br><b>mol</b> -1        |

## Unit 9: Rate equations

### 3. Determining order of reaction graphically

| . Rate equation |                                                 |                                      |
|-----------------|-------------------------------------------------|--------------------------------------|
| Rate            | $= k[A]^n$                                      | ${}^{\iota}[B]^{n}$                  |
| Rate            | The rate of reaction                            | Mol dm <sup>-3</sup> s <sup>-1</sup> |
| k               | The rate constant<br>(temperature<br>dependent) | variable                             |
| [A]             | Concentration of A                              | Mol dm <sup>-3</sup>                 |
| m               | Order of reaction with respect to A             |                                      |
| [B]             | Concentration of B                              | Mol dm <sup>-3</sup>                 |
| n               | Order of reaction with respect to B             |                                      |

### 2. Arrhenius equation

 $k = Ae^{-Ea/RT}$ 

| k  | The rate constant<br>(temperature<br>dependent) | variable             |
|----|-------------------------------------------------|----------------------|
| Α  | Arrhenius constant                              | S <sup>-1</sup>      |
| е  | Euler's number<br>(magic number e)              | 2.71                 |
| Ea | Activation energy                               | KJ mol <sup>-1</sup> |
| R  | Boyles gas<br>constant                          | 8.31 J/mol K         |
| Т  | Temperature                                     | К                    |



### 4. Determining the activation energy graphically



## Unit 10: Equilibria Kp

| 1. Keywords      |                                                                      |
|------------------|----------------------------------------------------------------------|
| Mole fraction    | <u>The number of moles of a species</u><br>The total number of moles |
| Partial pressure | The mole fraction of a species x total pressure                      |

### 2. Kp Expression $K_{p} = \frac{(P_{C})^{c} (P_{D})^{d}}{(P_{A})^{a} (P_{B})^{b}}$ Equilibrium constant Variable units Кр (P<sub>c</sub>) Partial pressure of C Pascals с Order with respect to C Partial pressure of D (P<sub>D</sub>) Pascals d Order with respect to D Partial pressure of A (P<sub>A</sub>) Pascals a Order with respect to A Partial pressure of B (P<sub>B</sub>) Pascals b Order with respect to B

# Unit11: Electrode potentials and electrochemical cells

| 1. Keywords                          |                                                                                                                                     | 2. Standard hydrogen electrode                                   |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Potential difference                 | The difference in voltage between two points.                                                                                       | Half cell equation:                                              |
| Electrode potential<br>Eº            | The is the potential difference of a cell built of two electrodes: on the left-hand side of the cell diagram is                     | $2 H^{+}_{(aq)} + 2 e^{-} \rightleftharpoons H_{2(g)}$           |
|                                      | right-hand side is the electrode in question under<br>standard conditions (1mol dm <sup>-3</sup> , 100kPa, 298K)                    | $E^{\circ} = +0.00 \text{ V}$                                    |
| Standard hydrogen<br>electrode (SHE) | The electrode given the electrode potential of 0.00v to establish all other electrode potentials                                    | Cell notation:                                                   |
| Platinum electrode                   | Unreactive electrode used in half cells when neither species is a solid metal                                                       | Pt(s)   H <sub>2</sub> (g)   H <sup>*</sup> (aq)                 |
| Electrochemical cell                 | A cell produced when 2 half cells of different electrode potentials are linked by a salt bridge                                     | 3. How to write conventional cell notation                       |
| Salt bridge                          | A medium connecting two half cells. Contains inert<br>ions to allow charge to flow without interfering with<br>the electrochemistry | left hand half cell                                              |
| EMF                                  | Electro motive force. The potential difference of a cell when no current flows                                                      | $Pt(s) \mid H_{2}(q) \mid H^{+}(aq) \mid Cu^{2+}(aq) \mid Cu(s)$ |
| Feasible reaction                    | A spontaneous redox reaction which generates a positive E° for the cell                                                             | $\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$       |
| Anode                                | The electrode where oxidation happens. In an electrochemical cell this is the negative terminal                                     | phase boundaries phase boundary                                  |
| Cathode                              | The electrode where reduction happens. In an electrochemical cell this is the positive terminal. Often on the right                 | Highest ovidation state is nearest the salt bridge               |
| Non-rechargeable<br>cell             | A cell with a spontaneous reaction which cannot be reverse                                                                          | If platinum electrode is present it goes on the far edges        |
| Rechargeable cell                    | A cell with a spontaneous reaction which can be reversed by applying an electric current                                            | 4. Calculating the EMF of a cell                                 |
| Fuel cell                            | A cell which generates an EMF providing a continuous flow of chemicals are provided                                                 | $EMF = E_{cell} = E_{right} - E_{left}$                          |
| Hydrogen fuel cell                   | A fuel cell which uses hydrogen and oxygen to generate an EMF. Water is the only waste product                                      | Note: SHE always goes on the left                                |

## Unit 12: Acids and Bases

| 1. Keyword                |                                                                                                            |
|---------------------------|------------------------------------------------------------------------------------------------------------|
| Bronsted-Lowry acid       | Proton donor                                                                                               |
| Bronsted-Lowry base       | Proton acceptor                                                                                            |
| Conjugate base            | An <b>acid</b> that has donated its hydrogen                                                               |
| Conjugate acid            | A <b>base</b> with a hydrogen ion added to it.                                                             |
| Strong                    | Fully ionises/dissociates in solution                                                                      |
| Weak                      | Partially ionises/dissociates in solution                                                                  |
| рН                        | -Log <sub>10</sub> [H <sup>+</sup> ]                                                                       |
| Kw                        | lonic product of water = $[H^+]$ $[OH^-] = 1 \times 10^{-14}$<br>At 298k                                   |
| Ка                        | Acid dissociation constant. A measure of dissociation of a weak acid. Units = Mol $dm^{-3}$                |
| Half equivalence<br>point | Half the volume required to neutralise and acid or base = pKa                                              |
| Indicator                 | A compound or compounds that change colour when pH changes. Should fall in the vertical rise on a pH curve |
| 10×                       | Inverse log button on your calculator duh!                                                                 |
| Buffer                    | Solution which resists small changes in pH. Made from a weak acids and its salt.                           |

| 2. Useful acids |                                |          |        |
|-----------------|--------------------------------|----------|--------|
| Name            | Formula                        | Strength | Protic |
| Hydrochloric    | HCI                            | Strong   | Mono   |
| Sulphuric       | H <sub>2</sub> SO <sub>4</sub> | Strong   | Di     |
| Nitric          | HNO <sub>3</sub>               | Strong   | Mono   |
| Phosphoric      | H <sub>3</sub> PO <sub>4</sub> | Strong   | Tri    |
| Ethanoic        | CH₃COOH                        | Weak     | Mono   |
| Ethanedioic     | НООССООН                       | Weak     | Di     |



