Trilogy C7 - Energy Changes	
1: Law of the conservation of energy	5: Reaction profile diagram
Energy is conserved. This means that the amount of energy in the universe is the same at the start of a reaction and at the end of a reaction. If the energy within the chemical bonds changes from the reactants to the products (which happens a lot), then the surroundings must either heat up or cool down to keep the total energy the same.	 A diagram that shows: the amount of energy in the reactants and the products how much energy is required to start the reaction (the activation energy) the overall energy change
cool down to keep the total energy the sume.	Exothermic energy profileEndothermic energy profileProduct energy is lower than reactantProduct energy is higher than reactant
2: Exothermic	
 A reaction that gives out energy. (<u>Ex</u>othermic = <u>Ex</u>it) The temperature of the surroundings increases The air around the reaction will feel hot The energy in the bonds of the reactants will be higher than the energy of the products 	Level 1 3 1 2 1 3 2 1 1 3 2 1 1 3 2 1 1 3 2 1 1 3 2 1 1 3 2 1 1 1 3 2 1 1 1 1
 all combustion (burning) reactions neutralisation (acid + base) reactions 	Reaction time Reaction time
Uses: • self-heating hand warmers • self heating coffee cups.	Key: 1 = reactants 2 = products 3 = optimizer anomal (community of from the prostants to the top of the
3: Endothermic	3 = activation energy (arrow must go from the reactants to the top of the curve)
 A reaction that takes in energy (<u>En</u>dothermic = <u>En</u>ter) The temperature of the surroundings decreases 	4 = overall energy change (arrow must go from the reactants to the products)
 The air around the reaction will feel cold The energy in the bonds of the reactants will be lower than the energy of 	6: (higher only) Calculating bond energy
the products	In all chemical reactions breaking the bonds of the reactants needs energy added to the chemicals and making bonds in the new products releases energy.
 Examples: thermal decomposition reactions (when you add lots of heat to make the shaming react) 	You will be given a table of the bond energies (you will not need to learn them)
 chemicals react) the reaction between citric acid and sodium hydrogencarbonate 	You will need to:
Uses: • sports injury cool packs	 count the number of each type of bond multiply it by the energy for that type of bond.
 sports injury cool packs burns cooling pack 	Then you will need to calculate:
4. Activation Energy (E _A)	 the total energy needed to break all the bonds in the reactants the total energy released when making all the bonds in the products the difference between the two totals
The minimum amount of energy particles must have to react is called the activation energy .	 the difference between the two totals If the reaction is endothermic: energy from breaking bonds is biggest
All reactions require particles to collide.	If the reaction is exothermic: energy from making bonds is biggest