 A pure substance is a simgle element or compound. A mixture is made up of two or more different elements or compounds that are not chemically joined together. A formulation is a mixture that has been specifically designed to produce a useful product. Examples include paints and medicinal drugs. <u>Identifying pure substances</u> The melting and boiling point of a substance can be used to tell whether it is pure or not. There are two ways you can use the melting and boiling point to tell if the sample is pure. 1) The range of the melting and boiling points will be very small if the sample is pure. Example: 	 stationary phase. In paper chromatography, the mobile phase along the paper (stationary phase). The different compounds in the sample will be along the paper (stationary phase). 	lifferent compounds in the sample through the se is a solvent such as water which carries the sample II travel different distances along the paper. to the mobile phase (very soluble in it) than the the paper. <u>Identifying unknown compounds</u> To identify the unknown compounds we calculate the Rf value (see left). When we have calculated the Rf value we can compare that to Rf values of known substances which are stored in databases. Alternatively, when we carry out the chromatography we can also run known samples and see if any spots travel the same distance.
Pure caffeine Impure caffeine	Solvent front	Example: In this example, two known
Melting point/°C 234-237 180-220		compounds (red and green ink) have been added to
 2) Alternatively, once you have recorded the melting/boiling point for a substance you can compare it to a database of known values. If the melting point you recorded matches the melting point given in the database, it is pure. If the melting point does not match the value in the 	9.7cm 7.5cm Pencil baseline	the chromatography paper. We can use them to confirm that the unknown sample contains red and green ink because the spots in the sample have travelled the same vertical distance.
database, your sample is impure. - <u>Generally</u> impure substances will have a lower melting point and a higher boiling point than the pure substance.	Example <u>7.5cm</u> = 0.77 9.7cm = 0.77	 The baseline is drawn in pencil and not ink because ink will dissolve in water and run. The pencil baseline must be above the surface of the water otherwise the sample will dissolve into the beaker of water and be lost.
Testing for gases		
<u>Hydrogen</u> Hold a lit splint near the sample of gas. <u>Carbon dioxide</u> Bubble gas through limewater		
Positive test: Hydrogen will burn with a squeaky pop sound. Positive test: If carbon dioxide is present it will turn limewater cloudy.		
Oxygen Hold a glowing splint near the sample of gas. Chlorine Use damp blue litmus paper Positive test: If oxygen is present a glowing splint will relight. Positive test: Chlorine will bleach damp blue litmus paper white.		

Trilogy C12 – Chemical Analysis